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We study the pair correlation function g�r� for zero-temperature, disordered, soft-sphere packings just above
the onset of jamming. We find distinct signatures of the transition in both the first and split second peaks of this
function. As the transition is approached from the jammed side �at higher packing fraction� the first peak
diverges and narrows on the small-r side to a � function. On the high-r side of this peak, g�r� decays as a
power law. In the split second peak, the two subpeaks are both singular at the transition, with power-law
behavior on their low-r sides and step-function drop-offs on their high-r sides. These singularities at the
transition are reminiscent of empirical criteria that have previously been used to distinguish glassy structures
from liquid ones.
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I. INTRODUCTION

It is only natural to suspect that the dramatic dynamical
arrest that occurs as a liquid is cooled into a glass must be
accompanied by a signature in the underlying atomic ar-
rangements. However, the atomic configurations in the liquid
and glass are strikingly similar to one another. Over the
years, the challenge to identify a subtle structural difference
between the two states has led to the proposal of several
empirical criteria �1–3�. In this paper, we reconsider an old
idea, due to Bernal �4�, of using static sphere packings to
gain insight into the structure of amorphous systems �5–10�.
We find that, with decreasing density, the structure of such
packings changes distinctly as they unjam.

It is particularly revealing to study static packings of
spheres interacting via a finite-ranged, purely repulsive po-
tential. There is a fundamental change in the mechanical
properties in such systems, reminiscent of the glass transition
�11�, as the packing fraction � is varied across a well-defined
unjamming-jamming transition at �c, which was found to
coincide with the value of random close packing �0.64
�12,13�. Above �c the system has nonzero static shear and
bulk moduli, while below �c it costs no energy to shear or
compress the system by an infinitesimal amount. Moreover,
the unjamming transition in many ways resembles a critical
point �12–20�, with many quantities, including a diverging
length scale, behaving as power laws as the transition is ap-
proached from higher density. Here we show that the unjam-
ming transition exhibits clearly identifiable structural signa-
tures associated with diverging quantities, even though both
the jammed and the unjammed states are disordered. These
structural characteristics are echoed in some of the empirical
criteria �1–3� that have previously been proposed for the
glass transition.

The simulations reported here are for monodisperse, soft
spheres of diameter � that interact through the potential
V�r�= �V0 /���1−r��, for r�1, and V�r�=0 when r�1. Here,
r is the center-to-center separation between two particles,
measured in units of �. We have studied both the harmonic,

�=2, and the Hertzian, �=2.5, cases. Particles are defined to
be in contact if they overlap. Our three-dimensional systems
consist of 1024�N�10 000 spheres in periodic, cubic simu-
lation cells. To enable a systematic study of the approach to
the unjamming transition, we employ conjugate-gradient en-
ergy minimization �21� to obtain T=0 configurations at vari-
ous packing fractions �. We average over ensembles of con-
figurations at the same distance from the transition point, i.e.,
at the same values of ����−�c, which is equivalent to
averaging over systems with the same pressure �12,13�.

Structural signatures of jamming are more evident �13� in
the pair correlation function g�r� than in the structure factor
S�k�, even though the two functions are simply related by a
Fourier transform. We therefore focus on the structural char-
acteristics that signal the approach of the zero-temperature
transition from the jammed side, through a detailed analysis
of g�r� computed with extraordinary resolution. In particular,
we study two features of g�r� that undergo dramatic changes
at the unjamming transition: the first peak and the split sec-
ond peak �i.e., the two subpeaks that merge with increasing
temperature to become the second peak in a typical dense
liquid�. A plot of g�r� is shown in Fig. 1 above the jamming
transition.

FIG. 1. The pair correlation function g�r� vs r at two extreme
values of ����−�c=10−6 �dotted line� and 10−1 �solid line�. The
maximum value of the first peak height is higher and its width
narrower for the lower value of ��. For ��=10−6, the first-peak
maximum is approximately 106, far beyond the scale of the graph.
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II. FIRST PEAK OF g„r…

The dominant feature in g�r� is the first tall, sharp
peak at rpeak �Fig. 1�. Precisely at the jamming threshold,
����−�c=0, this peak is a � function at rpeak=1; g�r� is
precisely zero for r�1 and has a power-law tail extending
to r	1. The weight under the � function is the coordi-
nation number at contact, Zcontact. �As we discuss below,
Zcontact is a few percent less than the isostatic coordination
number Zc=2d=6 for our �d=3�-dimensional systems
�12,13,22�.� For ��	0, there is some overlap between par-
ticles so that the �-function peak broadens and shifts to
rpeak�1, similar to the behavior of compressed emulsions
�23�. The broadening produces a tail extending to r�rpeak
that disappears in the limit where �� vanishes.

By analyzing the height of the first peak and its left-hand
width, we showed �13� that the peak approaches a � function
as �� decreases toward zero. We have since obtained more
systems over a wider range of ��. Figure 2 shows the de-
pendence on �� of the first-peak height g�rpeak� and its left-
hand width wL for both harmonic and Hertzian potentials.
Independent of the interaction potential, we find

g�rpeak� � ��−1.0, �1�

wL � ��1.0. �2�

These scalings are consistent with the area of the peak ap-
proaching a constant in the limit ��→0.

We turn now to the shape of the first peak in g�r� at
r�1 for a system at ��=1
10−6, just above the jamming
transition. As shown in Fig. 3�a�, for the region r�1, g�r� is

almost strictly exponential with only a small curvature near
its peak. It can be fitted with the functional form

g�r � �� = g0 exp�− 	�1

�
+

�2
2

�2 
−1� �3�

where ��1−r /rpeak, with �1=1.4
10−7 and �2=1.2

10−7.

FIG. 2. The height g�rpeak� �top panels� and the left-hand width
wL �bottom panels� of the nearest-neighbor peak of g�r�, over sev-
eral orders of magnitude of ��, for monodisperse spheres with
purely repulsive �a� harmonic spring and �b� Hertzian interactions.

FIG. 3. Pair distribution function g�r� up to contact 0�r�1 on
a linear-logarithmic scale, for ��= �a� 10−6, �b� 10−4, �c� 10−2, and
�d� 10−1.
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As we compress the system above �c we see that the
exponential behavior of the tail at r�1 gradually becomes
more Gaussian as the system is compressed above the tran-
sition. This is shown in Figs. 3�a�–3�d�. We can still use Eq.
�3� to fit the shape, but with different coefficients �1 and �2.
In Fig. 4 we show the evolution of �1 and �2 with ��. This
evolution occurs more rapidly for Hertzian �not shown� than
for harmonic spheres.

The results for g�r�1� have implications for the distribu-
tion P�F� of interparticle normal forces F. This is shown in
Fig. 5. At high compressions, P�F� is well described by a
Gaussian, but the tail straightens out toward an exponential
as �� is lowered toward zero. These results are consistent
with previous results of Makse et al. �16,24�, who studied
sphere packings at fixed pressure. �As we noted above, con-
stant pressure corresponds to constant ��.� The Gaussian
shape at high �� is consistent with expectations for equilib-
rium systems interacting with a harmonic potential �25�.
However, these systems are at zero temperature, and it is
unclear whether they can be described by a nonzero effective
temperature. The exponential behavior at small �� agrees
with experimental and simulation data on static granular
packings of hard particles, which necessarily exist at packing
fractions near �c �16,26,27�.

There is interesting behavior above the asymmetric
first peak in g�r� as well as below it. Figure 6�a� shows that
g�r	1� versus r−1 varies as a power law for a system just
above the transition at ��=10−8:

g�r 	 1� � �r − 1�−� �4�

with �=0.48±0.03. This result was first reported for gravity-
sedimented, granular packings �28�, but over a much smaller
range in g�r� than presented here. We note that there is a very
slight knee that occurs near r−1=3
10−2. The asymptotic
power-law behavior near r=1 should be determined only
from the region below this knee. As we will show below, this
knee becomes more pronounced as �� increases.

The number of neighbors Z��� that are separated by a
distance of at most � �29� is given by the integral

Z��� = 24��
0

�

g�r��r�2dr�. �5�

This is shown in Fig. 6�b�. Therefore, Fig. 6�a� and Eq. �4�
imply that for a system at the transition, Z should increase
with � as

Z − Zcontact � �1−�=0.52±0.03 �6�

where � is defined in Eq. �4� and Zcontact=5.88 is the average
number of neighbors per particle at contact at the transition.
This scaling is consistent with the one reported by O’Hern et
al. �12�, who looked at how the excess coordination number
increased as a system was incrementally compressed above
�c. We note that we have found a similar exponent of
0.50±0.03 using the Hertzian interaction potential, �=2.5, as
we found for the harmonic potential, �=2.

FIG. 4. Evolution of the parameters �1 and �2 �top� and g0

�bottom� in Eq. �3� with ��, for harmonic repulsions. The param-
eters �1,2 are clearly related to the pressure, while g0 is associated
with g�rpeak�.

FIG. 5. The distribution of normal contact forces, P�F�, for the
purely repulsive, harmonic potential, at different compressions ��.

FIG. 6. Behavior just above the first-neighbor peak for a system
at ��=10−8. �a� g�r	1� versus r−1. A power law with exponent of
−0.5 is indicated. �b� Z��� vs ��r−1, computed by numerically
integrating g�r�	1. A power law with exponent of 0.5 is indicated.
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Donev et al. �30� also calculated the number of neighbors
Z��� near the transition, but for a system of hard spheres.
When they plotted log10�Z���−Zc� versus log10 � they found
that the slope was closer to 0.6 than 0.5. They argued that
this implies that g�r	1�� �1−r�−0.4 for hard spheres, which
is different from our result for soft repulsive spheres �Eq.
�6��. Based on this difference, they concluded that the power-
law behavior seen for r	rpeak is not universal and depends
on the interparticle potential as well as perhaps the procedure
leading to the T=0 configuration.

However, that conclusion does not follow from their
analysis. The confusion occurs because their results were for
a system in which all the rattlers �that is, particles without
any neighbors� had been removed. It is not surprising that
this changes the nature of the pair correlation function from
a system, such as ours, where all particles are considered.
That is, we analyze the system directly as produced by en-
ergy minimization without performing the additional step of
removing particles that do not happen to be part of the back-
bone of the structure. Whether one chooses to remove rattlers
or not depends on the physics one wants to study. Here we
remark that it is more natural to include rattlers in g�r� if one
is going to compare to any experiment. We also note that
rattlers can join the backbone when the system is perturbed,
and can therefore influence the system’s response and stabil-
ity, as argued in Ref. �31�. Finally, we claim that the conclu-
sion of Donev et al. that the power-law exponent depends on
the potential of interaction or the algorithm for creating the
states �aside from removing one class of particles by hand� is
unfounded. Rather, the difference arises from whether one
studies systems with rattlers included or removed. When
Donev et al. include rattlers in their analysis, they also find
an exponent closer to 0.5 �32�, consistent with what we have
found here and in previous work �12,13,28�.

There is a difference between Zc and Zcontact. Zc is the
number of contacts only for a system that has all rattlers
removed from the system. If the rattlers are not re-
moved from the system then Zcontact�Zc. Because g�r�, for
example, measured in an experiment, does not distinguish
between rattlers and particles belonging to the connected
backbone of the structure, one must use Zcontact�5.88 in Eqs.
�6�. Indeed, calculating Z��� either directly as in Ref. �30�
or by integrating g�r� via Eq. �5� are identical only when
using Zcontact=5.88 and not Zc=6 in Eq. �6�. If N denotes
the total number of particles, Noverlaps the number of overlap-
ping pairs, and Nf the total number of rattlers, then Zcontact
=2Noverlaps /N while Zc=2Noverlaps / �N−Nf�. Although only
2% of the particles are rattlers at the transition, their exclu-
sion can produce a change of the power-law exponent.

We find that the observed power law for g�r� depends on
�� �see Fig. 7�a��. As �� increases, the knee in g�r� near
r−1�3
10−2 becomes more prominent. In the region be-
low this knee �i.e., at smaller r�, the slope of log10�g�r��
versus log10�r−1� decreases. We show this slope � as a func-
tion of �� in Fig. 7�b�. As �� approaches zero, the value of
� increases and approaches �=0.5. A similar trend was noted
in the x-ray tomography experiments of Aste et al. �33–35�,
who measured g�r� inside large, three-dimensional granular
packings. Note that Donev et al. �30� study configurations

below the unjamming transition, and it is not clear if the
apparent value of � also changes as the density is decreased
below �c. Figure 7�c� shows, for different values of ��, how
g�r� behaves in the region from r=rpeak out to the first mini-
mum at r�1.4. There are several notable features in g�r� in
the vicinity of contact that are apparent when g�r� versus
�r−rpeak� is plotted on log-log axes. There is a drop in g�r�
that occurs at r=1 for each value of �� �note that this cor-
responds to different values of r−rpeak for different ���. The
separation r=1 distinguishes particles that are overlapping
from those which are just out of contact. The magnitude of
the jump decreases, and the extent of the power-law region
described by Eq. �4� also decreases, as the system is progres-
sively compressed above the unjamming transition. The re-
gion beyond contact is relatively unaffected by compression.
�Although the power-law exponent changes slowly with ��
as highlighted in Fig. 7�b�, by far the largest change occurs
in crossing from r�1 to r	1.� This indicates that as the
system is compressed, particles are depleted from the region
beyond contact, r	1, and are absorbed into the contact re-
gion, r�1.

FIG. 7. Pair distribution function g�r�, just above the first peak
for ��=10−8 �
�, 10−6 �circles�, 10−4 �squares�, 10−3 �diamonds�,
10−2 �
�. �a� g�r� vs r−1, showing the power-law behavior in
�r−1�. �b� The exponent � characterizing the power-law behavior
of �a�, as a function of ��. �c� g�r� from the nearest-neighbor,
first peak at rpeak out to the first minimum at r�1.4 as a function of
r−rpeak.
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We have determined that this drop in g�r� is not an artifact
of the zero-temperature system. We have used several differ-
ent protocols for creating particle configurations, as shown in
Fig. 8 and described in its caption. Evidently, the drop in g�r�
persists to finite temperature.

Why should there be an abrupt drop in g�r� at r=1? One
possibility is that, to a first approximation, compression only
changes the nearest-neighbor spacing of particles that are
already in contact, that is, within a distance r�1 of each
other. Particles separated by a distance r	1 may not be
moved appreciably closer to one another by compression.
Instead, we suggest that upon compression, the movement of
particles that are not yet overlapping is predominantly in a
direction perpendicular to the line connecting them. This is
consistent with our data.

As the system is compressed and particles are incorpo-
rated into the contact region, the number of overlapping pairs
increases. As mentioned above, the average number of over-
lapping neighbors per particle, Z, increases with compression
as Z−Zcontact���0.5. As this occurs, the distribution of Z
values, P�Z�, also shifts. This is shown in Fig. 9. Close to the

transition, most particles have six overlapping neighbors, as
do granular packings �24,28�. As the system is compressed to
��=0.1, the maximum shifts to Z=9 but there is still no
observable weight at Z=12, and the behavior is similar to the
properties of compressed emulsions �23,24�.

III. SPLIT SECOND PEAK OF g„r…

The approach of the unjamming point is also apparent in
features associated with the second peak in g�r�. Figure 10
shows this region of g�r� for several values of ��. For the
system closest to jamming, at ��=1
10−6 �Fig. 10�a��,
there is a pronounced splitting of the second peak in g�r� into
two subpeaks, located at r=
3 and 2. Such a splitting of the
second peak has long been known �1,9,36�. Indeed, the emer-
gence of a split second peak was one of the early criteria
used to signal the onset of the glass phase in supercooled
liquids, and is generally accepted as lore, indicating the
emergence of the amorphous state.

On the small-r side of both of these subpeaks we find
that g�r� increases rapidly. In Fig. 11, we have attempted to
characterize these features for the system closest to the tran-
sition. In that figure we plot g�r� versus log10�
3−r� and
log10�2−r�. We have not been able to tell whether g�r� itself
diverges or whether the divergence appears only in its slope
dg�r� /dr. We would need to average over many more sys-
tems to tell these two possibilities apart unambiguously. Our
best fits to the two possible cases are

g�r� = a1�
3 − r�−a2, �7�

g�r� = g�
3� − b1�
3 − r�b2, �8�

g�r� = − c1 log10�
3 − r� �9�

and

g�r� = d1�2 − r�−d2, �10�

g�r� = g�2� − e1�2 − r�e2, �11�

g�r� = − f1 log10�2 − r� , �12�

FIG. 8. Pair distribution function g�r�, from the nearest-
neighbor, first peak at rpeak out to the first minimum at r�1.4, at
��=10−4. Different symbols represent different configuration pro-
tocols with and without temperature: conjugate gradient minimiza-
tion to T=0 �open circles�, quenched molecular dynamics at T=0
�open squares�, molecular dynamics at a very low temperature
�solid diamonds�, and molecular dynamics at a higher temperature
�
�. The jump in g�r� persists to small but nonzero temperature,
and is smoothed out at high enough temperatures.

FIG. 9. The distribution P�Z� of the number of overlapping
neighbors per particle, Z, at several different compressions. Key
same as Fig. 5.

FIG. 10. g�r� region around the split second peak for ��= �a�
10−6, �b� 10−3, and �c� 10−1.
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where the fit parameters are provided in Table I.
On the high-r side of each subpeak, it is clear from Fig.

10�a� that there is both a step-function drop-off �30,37� and
an additional smooth decrease of g�r� with increasing r. Al-
though, from these data, we cannot unambiguously deter-
mine a functional form for this last smooth decrease, the data
suggest that it might be fitted with

g�r� = a − �r − rs�b, �13�

where 0�b�1 and rs=
3 and 2 for the first and second
subpeaks, respectively. As the system is compressed above
the transition, the structure around both subpeaks becomes
rounded. In particular, it is only in the limit of ��→0 that
the drop-off becomes a sharp step function.

The local particle arrangements contributing to the sub-
peaks that make up the split second peak have been investi-
gated �7,38�. Our focus here is a simple interpretation of the

origin of the step-function drop-off in g�r� on the high-r side
of both subpeaks. At the jamming transition, each particle
must be held in place by particles that are just in contact
with no overlap. At that point there is an average of precisely
Zc=6 neighbors per particle in the force network. It seems
plausible that the second-nearest-neighbor peaks originate
from pairs of particles that have at least one neighbor in
common, while pairs that do not have a common neighbor
contribute only to a slowly varying background.

The separation r=2 corresponds to two particles on dia-
metrically opposite sides of a common neighbor �Fig. 12,
right�. This is the largest distance that can separate two
particles that have one common neighbor. The separation
r=
3 corresponds to the largest possible separation between
two particles i and j that have two common neighbors
�Fig. 12, left�. In this case the four particles lie in the same
plane; the two common neighbors touch and the particles i
and j are on opposite sides of the crease between them.
When r is only slightly greater than 2, there can no longer be
any contribution from two particles that share a common
neighbor. Similarly, when r is only slightly greater than 
3,
there can be no contribution from pairs of particles that share
two common neighbors. This leads to step-function drop-offs
at r=
3 and 2.

Support for the hypothesis that the drop-offs are due to
pairs of particles that share common neighbors can be ob-
tained from the angular correlations between two neighbors
of a common particle. We show this angular correlation P���
in Fig. 13, where � is defined in the sketch in the inset.
At �=� �which corresponds to particles separated by r=2�
Fig. 13�d� shows that the distribution goes to zero as

P��� � �� − ��x=0.75. �14�

If the subpeak at r=2 arises from pairs that share one com-
mon neighbor, then the form of g�r� just below r=2 should
be related to the form of P��� just below �=� by

g�r� = P���d�/dr �15�

where the Jacobian factor diverges as

d�i,j/dr =
1

cos��i,j/2�
=

2

4 − r2

. �16�

Thus, Eq. �15� implies

g�r� � �2 − r��x−1�/2=−0.12. �17�

This is in reasonable agreement with the fit in Eq. �11�,
where we found g�r���2−r�−d2=−0.08, implying that the sec-

FIG. 11. Functional form of the subpeaks of the split second
peak in g�r� for ��=10−6. Left-hand subpeak at r=
3; right-hand
subpeak at r=2. The solid line corresponds to a power-law fit, the
dashed line to a logarithmic fit, and the gray line to a shifted power-
law fit.

TABLE I. Fit parameters for the two subpeaks, situated at r
=
3 and 2, respectively, that make up the split second peak in g�r�.
For ��=10−6.

First subpeak Second subpeak

a1=0.9 d1=1.1

a2=0.12 d2=0.08

b1=2.75 e1=2.8

b2=0.16 e2=0.12

c1=0.25 f1=0.15

FIG. 12. Left: The particles at the left and at the right share two
common neighbors and are separated by a distance r=
3. Right:
The particles at the left and the right share one common neighbor
and are separated by r=2.
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ond subpeak does indeed arise from two particles that share a
common neighbor and that this leads to the observed step-
function drop-off just above r=2. However, we should note
that this argument does not necessarily imply that g�r� di-
verges at r=2, as indicated by Eq. �17�, since we cannot
determine the behavior of P��� asymptotically close to �
with sufficient accuracy.

By a similar argument, if the first subpeak arises from
pairs of particles that share two common neighbors, then the
peak at r=
3 corresponds to �=2� /3. For ��2� /3, we find

P��� � �2�/3 − ��−0.17. �18�

This behavior implies g�r���
3−r�−0.17; this result is not
too different from the fit in Eq. �7�, which suggests
g�r���
3−r�−0.12. This consistency check suggests that the
first subpeak does indeed arise from pairs of particles that
share two common neighbors.

Although pairs with two common neighbors cannot con-
tribute to g�r� for r	
3, pairs with only one common neigh-
bor can still contribute. Such pairs may account for the
smooth decrease in g�r� �see Eq. �13�� just above r=
3.

IV. DISCUSSION

We have shown that the unjamming transition is accom-
panied by several features in the pair correlation function.

�1� A � function at r=1 with area Zcontact�6.
�2� A power law at r	1 of the form g�r���r−1�−0.5.
�3� A subpeak at r=
3 that either diverges or has diverg-

ing slope as r→
3− and that has a step-function drop-off just
above r=
3.

�4� A subpeak at r=2 that either diverges or has diverging
slope as r→2− and that has a step-function drop-off just
above r=2.

These features appear for both the short-ranged and
purely repulsive harmonic and Hertzian potentials studied
here, and therefore seem to be purely geometrical features of
the jamming-unjamming transition at zero temperature.

Here, we suggest that some of these structural features are
reflected in a less extreme form in the two primary empirical
criteria that have been used extensively in the literature to
identify the glass transition. We expect these features to be-
come increasingly prominent as the short-range repulsive
part of the interaction potential plays a more dominant role
in determining structure. The first is the ratio R of the first
minimum to the first maximum in g�r�. As the temperature T
of a glass-forming liquid decreases, R decreases. Wendt and
Abraham �2� proposed that R=0.14 corresponds to a reason-
able estimate of the glass transition temperature Tg. We note
that at the unjamming transition we have studied here,
R=0. It is possible that the decrease in R observed as T is
lowered toward Tg is a remnant of the vanishing of R that
occurs at the unjamming transition. The latter property may
be the underlying reason for the apparent success of this
empirical criterion in the case of molecular �2,3� as well as
colloidal �39� glasses.

A second popular empirical criterion concerns the second
peak of g�r�. As T is lowered toward Tg, the second peak

FIG. 13. �a� The three-particle angular correlation P��i,j� versus
�i,j for ��=10−6. Bottom four panels are fits to the regions around
�= �b� 60°, �c� 120° left, �d� 120° right, and �e� 180°. The power-
law exponents are �0.5, 0.17, 0.17, and 0.75, respectively.
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splits into two subpeaks. The flattening of the second peak
that signals its splitting has been used to identify Tg �2�. The
splitting of the second peak has also been observed during
the transition from the flowing to the stopped state in a
granular material �40�. We suggest that the splitting may re-
flect the singular subpeaks that occur at jamming-unjamming
transition. The singular nature of the splitting at this transi-
tion may provide the fundamental underpinnings of this cri-
terion.
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